Sebanyak 4 item atau buku ditemukan

Scientia Magna, Vol. 5, No. 2, 2009

international book series

A collection of articles on smarandache notions in number theory.

[17] M. A. Noor, Some developments in general variational inequalities, Appl.
Math. Comput., 15(2007), No.2, 199-277. [18] M. A. Noor, T. M. Rassias, Z. H.
Huang, Three-step iterations for nonlinear accretive operator equations, J. Math.
Anal. Appl., 274(2002), 59-68. [19] A. Rafiq, On the equivalence of Mann and
Ishikawa iteration methods with errors, Math. Commun., 11(2006), 143-152. [20]
B. E. Rhoades and S. M. Soltuz, On the equivalence of Mann and Ishikawa
iteration methods, ...

Scientia Magna, Vol. 8, No. 2, 2012

international book series

Papers on Smarandache groupoids, a new class of generalized semiclosed sets using grills, Smarandache friendly numbers, a simple proof of the Sophie Germain primes problem along with the Mersenne primes problem and their connection to the Fermat's last conjecture, uniqueness of solutions of linear integral equations of the first kind with two variables, and similar topics. Contributors: A. A. Nithya, I. A. Rani, I. Arockiarani, V. Vinodhini, A. A. K. Majumdar, N. Subramanian, C. Murugesan, I. A. G. Nemron, S. I. Cenberci, B. Peker, P. Muralikrishna, M. Chandramouleeswaran, I. A. Rani, A. Karthika, and others.

In the case tmn = 1 for all m, n ∈ N; Mu (t), Cp (t), C0p (t), Lu (t), Cbp (t) and C0bp
(t) reduce to the sets Mu, Cp, C0p, Lu, Cbp and C0bp, respectively. Now, we may
summarize the ... x[m,n] → x. An FDK-space is a double sequence space
endowed with a complete metrizable; locally convex topology under which the
coordinate mappings x = (xk) → (xmn) (m, n ∈ N) are also continuous. Orlicz”
used the idea of Orlicz function to construct 20 N. Subramanian and C.
Murugesan No. 2.

Scientia Magna, Vol. 1, No. 2, 2005

international book series

Collection of papers from various scientists dealing with smarandache notions in science.

[2] K.Atanassov, Remarks on some of the Smarandache's problems. Part 1,
Smarandache Notions Journal, Spring, 12(2001), 82-98. [3] K.Atanassov, A new
formula for the n-th prime number. Comptes Rendus de l'Academie Bulgare des
Sciences,7-8-9(2001). [4] K.Atanassov, On the 20-th and the 21-st
Smarandache's Problems. Smarandache Notions Journal, Spring ,1-2-3(2001),
111-113. [5] K.Atanassov, On four prime and coprime functions, Smarandache
Notions Journal, Spring ...

Scientia Magna, Vol. 2, No. 2, 2006

international book series

Proceedings of The Second Northwest Conference on Number Theory and Smarandache Problems in China.

international book series Zhang Wenpeng, Jinbao Guo. If we take an as the
function of the variables a 1, a2, . . . . an_1, we have f(x1, x2, . . . , an_1, an) = -a"
+ -a” + · · · + a"-" + a 1a:2 . . . an 1 a "1"2 *n-1 – na. 3C1 3C 2 20 n-1 Then the
partial differential of f for every a, (i = 1, 2, . . . , n – 1) is () 1 1 1 —— ! = —a” (* - #)
+ -a” (a1a2 . . . an_1 – loga) 1 1 1 = - (* (*- #) + a” (: -wo)) • 3Ci 3Ci 3Un Let 2C.; 1
... / 1 g(x1, x2, . . . , an-1, an) = a” (log a - - ) + a” ( – – log a , (3) 3Ui 30 m. the
partial ...