Scientia Magna, Vol. 2, No. 2, 2006

international book series

Proceedings of The Second Northwest Conference on Number Theory and Smarandache Problems in China.

international book series Zhang Wenpeng, Jinbao Guo. If we take an as the
function of the variables a 1, a2, . . . . an_1, we have f(x1, x2, . . . , an_1, an) = -a"
+ -a” + · · · + a"-" + a 1a:2 . . . an 1 a "1"2 *n-1 – na. 3C1 3C 2 20 n-1 Then the
partial differential of f for every a, (i = 1, 2, . . . , n – 1) is () 1 1 1 —— ! = —a” (* - #)
+ -a” (a1a2 . . . an_1 – loga) 1 1 1 = - (* (*- #) + a” (: -wo)) • 3Ci 3Ci 3Un Let 2C.; 1
... / 1 g(x1, x2, . . . , an-1, an) = a” (log a - - ) + a” ( – – log a , (3) 3Ui 30 m. the
partial ...